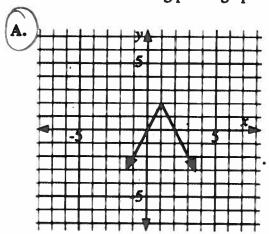
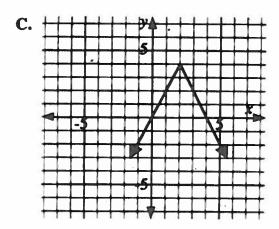

Transformations Lesson #9: Practice Test

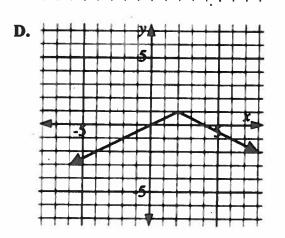
Section A

No calculator may be used for this section of the test.


Use the following information to answer the next question.

The partial graph of y = g(x) is shown below.




Nov statency

1. Which of the following partial graphs represents the function y = g(2x)?

5

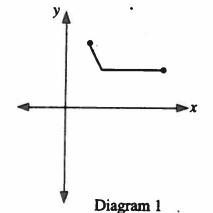
2. The graph of y = P(x) is translated 4 units up and 7 units right. The equation of the transformed graph is

A.
$$y + 4 = P(x - 7)$$

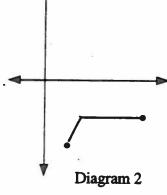
B.
$$y-4=P(x+7)$$

(C.)
$$y-4=P(x-7)$$

D.
$$y + 4 = P(x + 7)$$


$$y \to y - 4$$

 $x \to x - 7$
 $y - 4 = P(x - 7)$


- 3. How is the graph of $y = \left| \frac{x}{2} \right|$ related to the graph of y = |x|?
 - A. The graph of y = |x| has been stretched vertically by a factor of $\frac{1}{2}$ about the x-axis.
 - **B.** The graph of y = |x| has been stretched vertically by a factor of 2 about the x-axis.
 - C. The graph of y = |x| has been stretched horizontally by a factor of $\frac{1}{2}$ about the y-axis
 - **D.** The graph of y = |x| has been stretched horizontally by a factor of 2 about the y-axis.
- 4. The function y = g(x) is shown in diagram 1. The equation of the function shown in diagram 2 could be

$$A. \quad y = g(-x)$$

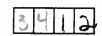
C.
$$y = g^{-1}(x)$$

$$\mathbf{D.} \quad y = -g(-x)$$

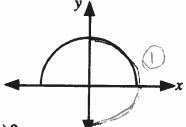
reflection in xians

Consider the following equations of transformations of y = P(x).

1.
$$y = P(x) + 9$$

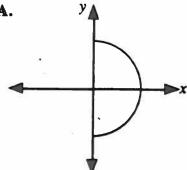

2.
$$y = P(x) - 9$$

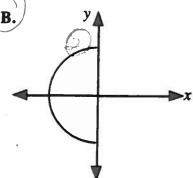
3.
$$y = P(x + 9)$$

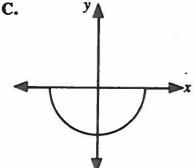

$$4. \quad y = P(x - 9)$$

In the first box write the equation number for the translation 9 units left. 3 In the second box write the equation number for the translation 9 units right. In the third box write the equation number for the translation 9 units up. \ In the fourth box write the equation number for the translation 9 units down.

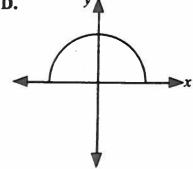
(Record your answer in the numerical response box from left to right.)


5. The graph of y = f(x) is shown.




etector roses

Which graph represents x = -f(y)?



D.

Section B

A graphing calculator may be used for the remainder of the test.

- The point (2,-4) is on the graph of the function y = f(x). The point which must be on the graph of $y = f^{-1}(x)$ is
 - **A.** $(2,-\frac{1}{4})$ **B.** (2,4)

 - C. (-2,-4) (D.) (-4,2)
- nuise transformation

Switch X+4.

The relation $x = \sqrt{4 - y^2}$ is stretched vertically by a factor of 3 about the x-axis and then translated 2 units to the left. The equation of the transformed relation is 7.

A.
$$x = 3\sqrt{4 - (y+2)^2}$$

1. X > X12 - X-2. V4-92 る・サラカタ メナる = シュー(もず)まり

B.
$$x = \sqrt{4 - 9y^2} - 2$$

- C. $x = \sqrt{4 \frac{1}{9}y^2} + 2$
- **D.**) $x = \sqrt{4 \frac{1}{9}y^2} 2$
- 16 Heat 2. Response

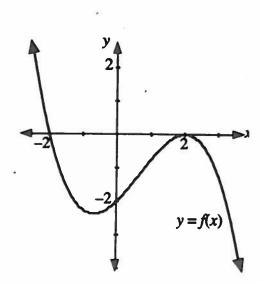
The domain of the function y = f(x) is $x \ge 4$. Function f is stretched horizontally by a factor of 5 about the y-axis to form a new function g. The domain of the function g(x) can be written in the form $x \ge k$, where k is a whole number. The value of k is ___

(Record your answer in the numerical response box from left to right.)

4(5)=20 X3 70

8. The function, f(x), whose graph has two x-intercepts is shown in the diagram.

> The function whose graph has only one x-intercept is 2777 10 300

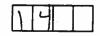


$$\mathbf{B.} \quad f(x+2) \qquad \text{a.s.} \quad \mathsf{L}$$

$$\mathbf{D.} \quad f(x+2)$$

C.
$$f(x) - 2$$
 ∂A

$$\mathbf{D.} \quad f(x) + 2 \qquad \text{and} \quad \uparrow$$



The function $f(x) = -\frac{28}{x+2}$ is reflected in the line y = x to form function g.

The ordered pair (k, -4), where $k \in W$, lies on the graph of y = g(x).

The value of k is $\underline{}$.

(Record your answer in the numerical response box from left to right.)

If k,-4 is on y=g(x) thun (4, k) 13 on 4 + 4 (4) K = - 98 = 14

9. The zeros of the function y = P(x) are -3, -1 and 5. The zeros of the transformed function $y = \frac{1}{2}P(x+1)$ are

- **A.** -4, -2, 4 **B.** -2, 0, 6

24= P(x+1)

- C. -2, -1, 2 D. $-\frac{5}{2}$, $-\frac{3}{2}$, $\frac{3}{2}$
- グラカタ メーシャー(vs. by | | | | |

Use the following information to answer the next question.

The partial graph of y = f(x) is shown. y = f(x)0

y=f(x)-1 y-1= f(x) 9-3 9-1 I unit V

- 10. The number of solutions to the equation f(x) 1 = 0 is f(x) = 1
- B.
- C. 3 D. 4

The equation that would cause the graph of y = g(x) to stretch vertically about the x-axis by a factor of $\frac{1}{6}$ and then reflect in the y-axis is

$$A. \quad y = -6g(x)$$

4764

$$\mathbf{B.} \quad y = -\frac{1}{6}g(x)$$

$$\mathbf{C.} \quad y = 6g(-x)$$

$$\begin{array}{c}
\hline
\mathbf{D.}
\end{array} y = \frac{1}{6}g(-x)$$

Use the following information to answer the next question.

The ordered pair (a,b) is on the graph of the function y = f(x). Six ordered pairs, the images of (a,b) derived from transformations of f(x), are shown below.

Ordered pair #1: (3a,b)

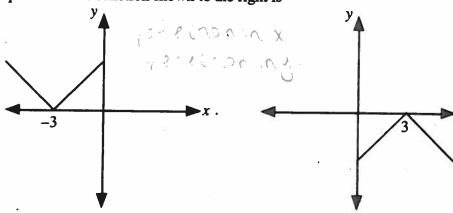
XATX

Ordered pair #2: (3a,3b) Ordered pair #3:

大きな 4つうり

 $\left(a,\frac{b}{3}\right)$ Ordered pair #5: $\left(\frac{a}{3},b\right)$ Ordered pair #6: $\left(a,3b\right)$

In box 1 write the ordered pair # for the function 3f(x). In box 2 write the ordered pair # for the function $f\left(\frac{1}{3}x\right)$ 3aIn box 3 write the ordered pair # for the function $\frac{1}{3}f(x)$ \bigcirc In box 4 write the ordered pair # for the function $f(3x) = \frac{6}{3}$ (Record your answer in the numerical response box from left to right.)



9-734 - V.S. 3/= (43) -9,1

VOEX WELCOM

- The point (-9,3) is on the graph of the function y = f(x). The point which must be on the graph of $y = \frac{1}{3}f(-x)$ is 3y = f(x)
 - - (-3, -3)
 - (-9, 1)
 - D. (-9, -1)

13. The function y = g(x) is graphed to the left below. The equation of the function shown to the right is

A.
$$y = g(-x + 6)$$

B.
$$y = g(-x - 6)$$

C.
$$y = g^{-1}(x)$$

$$\begin{pmatrix}
O \\
D
\end{pmatrix} y = -g(-x)$$

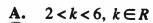
j = - g (-x)

14. The equation which represents the graph of $y = x^3$ after it is reflected in the line y = x is

$$(A) x = y^3$$

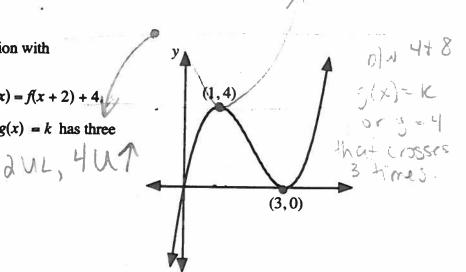
B.
$$y = -x^3$$

C.
$$y = x^3$$

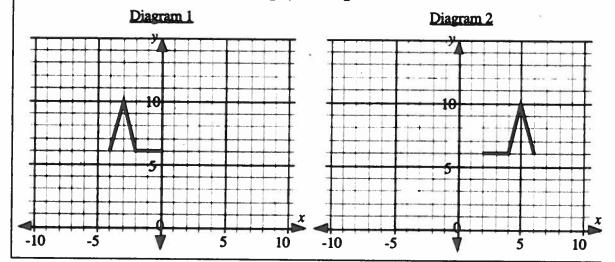

D.
$$y = \frac{1}{x^3}$$

X = 43

15. A partial graph of a cubic function with equation y = f(x) is shown.


A function g is defined by g(x) = f(x+2) + 4

The range of values for which g(x) = k has three distinct real roots is


C.
$$-2 < k < 2, k \in R$$

D.
$$-4 < k < 0, k \in R$$

Use the following information to answer the next question.

- The graph of y = f(x) is shown in Diagram 1.
- Diagram 2 is a transformation of the graph in Diagram 1.

16. The equation of the graph shown in Diagram 2 is

$$A. \quad y = -f(x-2)$$

B.
$$y = -f(x+2)$$

C.
$$y = f[-(x-2)]$$

D.
$$y = f(-x - 2)$$

$$y = f(-x)$$

 $y = f(-x)$

17. The ordered pair (p, q) is on the function y = g(x). The function is transformed and the resulting function has the equation y - 6 = g(x + 4). The ordered pair which must be on the transformed function is

A.
$$(p+4, q+6)$$

B
$$(p-4, q+6)$$

C.
$$(p+4,q-6)$$
 D. $(p-4,q-6)$

D.
$$(p-4, q-6)$$

the transformed function is
$$(p+4,q+6) \quad \textbf{B} \quad (p-4,q+6) \quad \qquad (p+4,q+6) \quad \qquad (p+4,q+6)$$

18. The transformation of
$$y = g(x)$$
 to $y = -10g(x)$ is

- (p,9) 7 (p-4,9+6) The transformation of y = g(x) to y = -10g(x) is $-\frac{1}{10}y = g(x)$
- a vertical stretch by a factor of 10 about the x-axis and a reflection in the x-axis
- a vertical stretch by a factor of $\frac{1}{10}$ about the x-axis and a reflection in the x-axis
- a vertical stretch by a factor of 10 about the x-axis and a reflection in the y-axis C.
- a vertical stretch by a factor of $\frac{1}{10}$ about the x-axis and a reflection in the y-axis

The range of the function y = f(x) is $y \le 16$. The range of the function y = f(x + 6) - 3 is $y \le c$ where c is a whole number. The value of c is _____

(Record your answer in the numerical response box from left to right.)

$$y+3 = f(x+6)$$

$$6UL, 3UV$$
 range of $y = f(x+6)-3$
 $16, 00000 3 = 13$

19. The point (8, -4) is on the graph of the function y = f(x). The point which must be on the graph of 4y = -f(-x) is

A. (-2,4)

- (-32,4)
- (-8, 16)
- 4y f (-x) veril street factor $(8,-4) \rightarrow (8,-1) \rightarrow (8,1) \rightarrow (-8,1)$

The function $f(x) = kx^2$, where k < 0, is transformed to $g(x) = k(x + 2)^2 - 6$. The range of the transformed function is

 $y \ge -6$

- range of f(x) y ≤ 0

 $y \leq -6$

- 47 470 76 UV + 2UL
- D. none of the above

xxxx

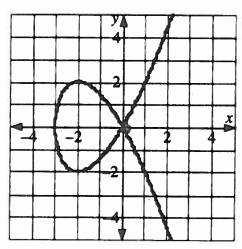
4 5 -6

The point P(4, 12) is on the graph of $y = 2^x - 4$. As a result of the transformation of the graph $y = 2^x - 4$ into the graph of $y = 2^{\frac{1}{2}x - 8} - 4$, the point P is transformed to the point Q(a, 12). The value of a is _____

(Record your answer in the numerical response box from left to right.)

$$y = 2^{\frac{1}{2}(X-16)} - 1$$
 compared to $y = 2^{\frac{1}{2}}$

@ 1-1-10 B16


X = > 3 X

X-) X-10

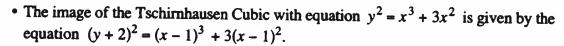
Written Response

Use the following information to answer this question.

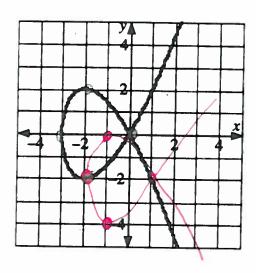
A Tschirnhausen Cubic is a curve given by an equation such as $y^2 = x^3 + 3x^2$. A partial graph of $y^2 = x^3 + 3x^2$ is shown below.

The graph passes through the points (-3,0), (-2,2), (-2,-2) and (0,0).

The questions below are about various transformations applied to . the Tschirnhausen Cubic with equation $y^2 = x^3 + 3x^2$.

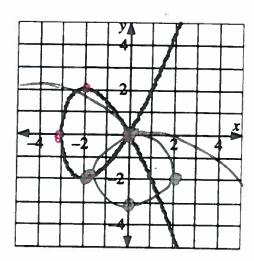

• If the Tschirnhausen Cubic with equation $y^2 = x^3 + 3x^2$ is transformed 3 units to the right, state the domain and range of the transformed relation.

 Describe a single transformation applied to the Tschirnhausen Cubic with equation $y^2 = x^3 + 3x^2$ such that the graph of the image coincides with the original curve


• Write the replacement for x or y associated with the transformation in the previous bullet and show that the equation of the image is identical to the original equation.

$$y^3 - y$$
 $(-y)^2 = x^3 + 3x^2$ [some given or $-x^3 + 3x^2$]

Mirelan



On the grid shown, sketch the transformed image, and mark on the grid the coordinates c the images of the four points given in the information above.

• The Tschirnhausen Cubic with equation
$$y^2 = x^3 + 3x^2$$
 is reflected in the line $y = x$.

Determine the equation of the image of the Tschirnhausen Cubic as a result of this reflection and sketch the transformed relation on the grid below.

$$(-3,2) \rightarrow 3-2$$

 $(-3,0) \rightarrow 0,-3$
 $(-3,0) \rightarrow 0,-3$
 $(-3,0) \rightarrow 0,0$