

Class Ex. #8 shows that if the sum of the coefficients of a polynomial function is equal to zero, then 1 is a zero of the function.

Complete Assignment Questions #6 - #20

Assignment

1. Use the remainder theorem to find the remainder when each of the following polynomials divided by the binomial.

a)
$$P(x) = 3x^3 - x^2 + 2x + 1$$

is divided by $x + 5$
 $P(-5) = 3(-5)^3 - (-5)^2 + 2(-5) + 1$
 $= -375 - 25 - 10 + 1$
 $= -409$
remainder = -409.

b)
$$P(x) = x^4 + x^2 - 8x + 5$$

is divided by $x - 4$
 $P(4) = (4)^4 + (4)^2 - 8(4) + 5$
 $= 256 + 16 - 32 + 5$
 $= 245$
 $R = 245$

2. Find the values of p and q if $x^3 + px + q$ yields remainders of -3 and 2 when divided by x - 2 and x + 1 respectively.

$$\frac{4}{3p+q} = -11 \qquad 5 \qquad 3 = -1$$
subtract. $-p+q=3$

$$p=-14 \qquad 9=\frac{3}{3}$$

$$\begin{array}{c|c} -3 & 6 \\ -\frac{5}{3} & p = -\frac{14}{3}, q = \frac{-5}{3} \end{array}$$

3. When $P(x) = x^4 + mx^3 - nx^2 + 28x - 24$ is divided by x - 3, the remainder is 6. If P(1) = -4, find the values of m and n.

$$P(3) = 6 \quad \text{(a)} \quad P(3) = 3^4 + m(3)^3 - n(3)^2 + 28(3) - 24 = 6$$

$$P(1) = -4 \quad \text{(a)} \quad P(3) = 3^4 + m(3)^3 - n(3)^2 + 28(3) - 24 = 6$$

$$\begin{array}{c}
3 \\
p(1) = (1)^{4} + m(1)^{3} - n(1)^{2} + 38(1) - 34 \\
- + = 1 + m - n + 38 - 34 \\
- m + n = 9
\end{array}$$

$$5$$
 -mtn = 9
-(-3)+n=9
 $n=6$
 $m=-3, n=6$

4. When $x^4 + ax^2 - 16$ is divided by x + 1, the remainder is -14. What is the remainder when $x^4 + ax^2 - 16$ is divided by x - 2?

$$P(-1) = -14$$

$$P(-1) = (-1)^{4} + \alpha(-1)^{2} - 16$$

$$-14 = 1 + \alpha - 16$$

$$\alpha = 1$$

$$R = 4$$

5. P(x) is a polynomial which has a remainder of 2 when it is divided by x + 3. Find the remainder when the following polynomials are divided by x + 3.

(i)
$$P(x)-1$$
 (ii) $P(x)+2x+6$ (iii) $3P(x)$

$$= \rho(x)+\lambda(x+3)$$

$$= \lambda + 0 \qquad = \lambda$$

$$= \lambda + 0 \qquad = \lambda$$

6. If x - a is a factor of the polynomial P(x), what is the remainder obtained when P(x) is divided by x - a?

7. Determine which of the following binomials are factors of $P(x) = x^3 - 4x^2 - x + 4$.

$$R(1) = 1^{3} - 4(1)^{2} - 1 + 4$$
 $R(1) = 1^{3} - 4(1)^{2} - 1 + 4$
 $R(1) = 0$
 $R(1) = 0$
 $R(1) = 0$
 $R(1) = 0$
 $R(2) = 0$
 $R(3) =$

c)
$$x+2$$

$$p(-a) = (-a)^{3} - 4(-a)^{2} - (-a) + 4$$

$$= -8 - 16 + 2 + 4$$

$$= -18$$

$$p(-a) \neq 0, \text{ not a}$$

$$factor.$$
d) $x-4$

$$p(4) = 4^{3} - 4(4)^{2} - 4 + 4$$

$$= 64 - 64 - 4 + 4$$

$$p(4) = 0$$

$$x-4 \text{ is a factor.}$$

8. Find the value of a so that x + 1 is a factor of $x^4 + 4x^3 + ax^2 + 4x + 1$. $(p(-1)) = (-1)^4 + 4(-1)^3 + 4(-1)^2 + 4(-1) + 1$

$$0 = 1 - 4 + a - 4 + 1$$
 $0 = a - 6$

9. When $P(x) = 2x^3 + ax^2 + bx + 6$ is divided by x + 2, the remainder is -12. If x - 1 is a factor of the polynomial, find the values of a and b.

$$P(-2) = -12$$

 $-1a = a(-a)^3 + a(-a)^4 + b(-a) + b$
 $-1a = -1b + 4a - 2b + 6$
 $-a = 4a - 2b$
 $aa - b = -1$

$$aa - b = -1$$
 $ab = -8$
 $add a + b = -8$
 $b = -8$
 $add a + b = -8$
 $add a + b = -8$

$$P(1)=0$$
 $0 = \lambda(1)^3 + \alpha(1)^2 + b(1) + 6$
 $0 = \lambda + \alpha + b + 6$
 $-8 = \alpha + b$

$$a+b = -8$$

 $-3+b = -8$
 $b = -5$
 $a=-3, b=-5$

10. If $P(x) = x^3 + kx^2 - x - 2$ and P(-2) = 0, determine the complete factoring of P(x).

$$p(-a) = (-a)^3 + K(-a)^4 - (-a) - 2$$
 $0 = -8 + 4K + 2 - 2$
 $8 = 4K$
 $2 = K$

$$P(x) = (x+a)(x-1)(x+1)$$

$$P(x) = (x+a)(x-1)(x+1)$$

11. Show that -4 is a zero of $P(x) = 6x^3 + 25x^2 + 2x - 8$ and find the other zeros.

(i)
$$P(-4)=0$$
 $0=6(-4)^3+25(-4)^4+2(-4)-8$
 $0=-384+400-8-8$

$$=0$$

$$-4 is a zero$$

= (3x+2)(2x-1)

3 $6x^{2}+x-2$ e factor to get zeros. 6 $x^{2}-3x+4x-2$ \Rightarrow other zeros are $-\frac{2}{3}$, $\frac{1}{2}$ 3x(2x-1)2(2x-1)

other zeros are
$$-\frac{2}{3}$$
, $\frac{1}{2}$

12. Given that $x^2 + 2x - 3$ is a factor of $f(x) = x^4 + 2x^3 - 7x^2 + ax + b$, find a and b and hence factor f(x) completely.

$$\int_{0}^{3} x^{3} + \lambda x - 3 = (x + 3)(x - 1)$$

nence factor
$$f(x)$$
 completely.
 $x^{3}+\lambda x-3=(x+3)(x-1)$

$$0 = (1)^4 + a(1)^3 - 7(1)^2 + a(1) + b$$

(3)
$$0 = 1 + 2 - 7 + a + b$$

 $4 = a + b$

$$0 = (-3)^{4} + d(-3)^{3} - 7(-3)^{2} + a(-3) + b$$

$$0 = 81 - 54 - 63 - 3a + b$$

$$3a - b = -36$$

a)
$$2x^4 + x^3 - 3x^2 + 3x - 4$$
 is divided by $2x - 1$

$$3a-b--36$$
 6 atb = 9
add atb = 4 -8tb = 4
 $4a = -32$ $b = 13$

$$\begin{cases} 8 & 1 & | & -1 & -4 & 4 \\ 1 & 0 & -4 & 0 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & -4 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 &$$

a)
$$2x^4 + x^3 - 3x^2 + 3x - 4$$
 is divided by $2x - 1$

b)
$$3t^3 - 2t + 2$$
 is divided by $3t + 1$

$$P(\frac{1}{2}) = \lambda (\frac{1}{4})^{4} + (\frac{1}{2})^{3} - 3(\frac{1}{4})^{2} + 3(\frac{1}{6})^{-4}$$

$$= \frac{1}{8} + \frac{1}{8} - \frac{3}{4} + \frac{3}{2} - 4$$

$$R = -3$$

$$P(\frac{1}{3}) = 3(-\frac{1}{3})^3 - 2(-\frac{1}{3}) + 2$$

$$= -\frac{1}{9} + \frac{1}{3} + 2$$

$$R = \frac{23}{9}$$

14. For $P(x) = x^2 - x + 1$, find a if P(a) = 3.

$$3 = a^{2} - at1$$

 $0 = a^{2} - a - 2$
 $= (a - a)(at1)$
 $a = 2$ or -1

When a polynomial P(x) is divided by x-2, the remainder is 3. If the polynomial A(x) = 2P(x) is divided by x - 2, the remainder will be

2(3)=6

$$(\mathbf{D})$$
 6

			Polynomial Functions and Equations Lesson #4: The Remainder Theorem and the Factor Theorem						
	16.	If a polynomial $P(x)$ has $P(0) = 8$, then which of the following statements must be true							
		A	The constant	term in $P(x)$ is	8. B.	The constant to	erm in $P(x)$ is	s −8.	
		C.	A factor of P	(x) is x + 8.	D.	A factor of P(x	(x) is $x - 8$.		
	17.	If a polynomial $P(x)$ has $P(8) = 0$, then which of the following statements must be true $(x-8)$							
		A.	The constant	term in $P(x)$ is	8. B.	The constant to	erm in $P(x)$ is	-8.	
		C.	A factor of P((x) is $x + 8$.	D .	A factor of $P(x)$	(x) is $x - 8$.		
	18.	Whe Whi	n a polynomial ch of the follow	P(x) is divided $P(x)$ is divided $P(x)$ is divided $P(x)$ is divided $P(x)$.	d by $x + 5$, the is true?	ne remainder is –	P(-	z)= -9	
		A.	P(-2) = -5	B. P(-	2) = 5	C. $P(5) = -2$	(D.) H	P(-5) = -2	
Numerica Response	ルフ・	by x	-5. The value	e of a , to the ne	earest tenth,			divided	
		(5)	and your answer in $= \lambda(5^3)$	a(5)=111	(5)+20	λ.	[3].	- D	
	l	23	= 250 - 2 a = 69 a = 3	15a -5	5 tda				
p(a)=0	20. When $x^3 - 4x^2 + 3$ and $x^3 - 3x^2 - 8x + 19$ are each divided by $x - a$, the remainders are equal. To the nearest tenth, the value of a is								
		(Reco	rd your answer in	the numerical re-	sponse box fro	m left to right.)	41,	0	
	a ³	-4a	$1^{2}+3 = a^{2}$	³ -3a ² -8	a+19				
		•	$=a^2-8$	-	•				
		(5 = (a-L						
			a = 4						
,	Ansv	ver K	'ev						
	1. a	-40	9 b) 2	45 2	$2 \cdot p = -\frac{14}{3}$	$q = -\frac{5}{3}$	3. m	= -3, n = 6	
	4.4	- 6	5. (i) 1	(ii) 2 (iii) 6	6.0	7. a and d		
	o. a	$\frac{2}{3} \cdot \frac{1}{3}$	9. a = 12. a =	-3, b = -3 -8, b = 12	10. ($x + 3$)($x - 1$)	(x + 2)(x + 1)(x - 2)	1)		
	13. a	3 - 3	2.2	14. a=			16. A		
	17.		,	19. 3	. 0	20. 4			

p(a)=0