## Investigating the Graphs of $y = \log x^n$ and $y = n \log x$

One of the laws of logarithms states that  $\log x^n = n \log x$ However, are the graphs of  $y = \log x^n$  and  $y = n \log x$  identical?

Investigate by considering odd and even values for n.

Complete Assignment Questions #6 - #17

## **Assignment**

1. a) Complete the following table.

| Function                      | Domain        | Range . | Asymptote |
|-------------------------------|---------------|---------|-----------|
| $f(x) = \log_4 x$             | x   x 70, xer | YER     | X=0       |
| $f(x) = \log_{\frac{1}{4}} x$ | x\ x70, x ER  | YER     | X= 0      |

- b) Describe how the graph of  $y = \log_4 x$  is related to the graph of  $y = \log_{\frac{1}{4}} x$ .
- c) Hence write  $y = \log_{\frac{1}{2}} x$  in the form  $y = a \log_4 x$ .



i) 
$$\log_{\frac{1}{2}}x$$
 -reflection in x-axis

$$i) \quad \log_{\frac{1}{2}} x \quad = \quad \underline{\hspace{1cm}} \log_9 x$$

b) Complete the statements  
i) 
$$\log_{\frac{1}{2}} x = \frac{1}{\log_9 x}$$
 ii)  $\log_{81} x = \frac{1}{2} \log_9 x$  iii)  $\log_3 x = \frac{1}{2} \log_9 x$ 

3. a) Describe the transformation which maps the graph of 
$$\log_8 x$$
 to the graph of

ii) 
$$\log_{1}x$$
 - vertical stretch by a factor of  $\frac{1}{2}$  about  $x$ -axis

 $8^{13} - 72$ 
 $8^{11} - 10g_{2}x$  - vertical stretch by a factor of  $\frac{1}{2}$  about  $x$ -axis

 $8^{2} - 6^{4}$ 

iii)  $\log_{1}x$  - reflection in  $x$ -axis

$$i) \log_2 x = 3 \log_8 x$$

ii) 
$$\log_{64} x = \frac{1}{2} \log_8 x$$

b) Complete the statements  
i) 
$$\log_2 x = 3 \log_8 x$$
 ii)  $\log_{64} x = \frac{1}{2} \log_8 x$  iii)  $\log_{\frac{1}{8}} x = \frac{1}{2} \log_8 x$ 

4. a) If 
$$\log_6 x = 6$$
, state the values of  $\log_{\frac{1}{6}} x$ ,  $\log_{36} x$ , and  $\log_{\sqrt{6}} x$ .

$$-6^{6}$$
  $\frac{1}{2}6=3$   $a(6)=12$ 

$$\log_6 X = 6 \qquad \text{let}$$

$$X = 6$$

$$1 \log_{36} x = a$$
 $1 \log_{36} x = 3$ 
 $1 \log_{36} x = 3$ 
 $1 \log_{36} x = 3$ 

$$x = 6^{1/2} \alpha$$
 $6 = 6^{1/2} \alpha$ 
 $12 = \alpha$ 

ithmic functions are given below. 
$$y = \log_b X^{-1} - \log_b X$$

$$y = \log_b x$$
,  $y = -\log_b x$ ,  $y = \log_{\frac{1}{b}} x$ ,  $y = -\log_{\frac{1}{b}} x$ ,  $y = \log_b \left(\frac{1}{x}\right)$ ,  $y = \log_{\frac{1}{b}} \left(\frac{1}{x}\right)$ 

When graphed, the six functions can be arranged into two groups of three identical graphs.

5. Which functions are in each group?

(a) 
$$y = -\log_b x_1$$
  $y = \log_b x_1$   $y = \log_b \frac{1}{x}$ 

6. Describe how the graphs of the following functions relate to the graph of  $y = \log x$ .

**b**) 
$$\frac{1}{7}y = \log 2(x-3)$$

c) 
$$y = \log \frac{1}{3}x + 1$$
  
 $x = \frac{1}{3}x$  horizontal stretch by a factor of 3 about y-axis, vertical translation | unit up.

d) 
$$y = log(3x + 1)$$
  
 $y = log(3x + 1)$   
 $y = log($ 

7. Complete the following table.

| Function                                     | Domain          | Range | Asymptote |
|----------------------------------------------|-----------------|-------|-----------|
| $f(x) = \log x$                              | xlx70,xeR       | y ER  | X=0       |
| $f(x) = 5 \log x + 2$                        | X\X70,XER.      | YER   | X=O       |
| $f(x) = 5 \log (x+2)^{24}$                   | x1x7-2,xER      | yer   | X= -2     |
| $f(x) = -\log x$                             | x(x70, XER      | YER   | X=0       |
| $f(x) = \log(-x) \frac{x-7-x}{(veflecting)}$ | XXXLOIXER       | y & R | X=0       |
| $f(x) = 2 \log_{6} 3(x - 6) - 1$             | x   x > 6, x ER | YER   | X=6       |
| $f(x) = \log(3x - 6)$ $\log(3x - 2)$         | xl X72, XER     | yek   | X=2.      |

8. Consider the graph of the function  $f(x) = a \log_a b(x - h) + k$ , with a, b > 0Which of the parameters a, b, c, h, k, affect the

a) domain

b) range

c) asymptote

(horiz. translation)

NOY1

- 9. Consider the graph of the function  $f(x) = a \log_{a} b(x h) + k$ , with a, b > 0.
- a) If a is changed to a negative value, does this affect the domain, range, or asymptote? vert.stretch
  - b) If b is changed to a negative value, does this affect the domain, range, or asymptote? -horiz. stretch -> affects domain if h + 0

Use the following information to answer the next question.

Two students, Andy and Holly, were given the following question on an exam.

A transformation is applied to the graph of  $y = \log x$  and a sketch of both graphs is shown. Write the equation of the graph which represents the transformed image."



- a) Andy correctly answered the question with the equation of the transformed image as  $y = \log 3x$ .) Explain from the given sketch how Andy arrived at his solution. yes > y= log3x is a hor. stretch by a factor of 1/3.
  - b) Holly also correctly answered the question, but with an equation in the form  $y = \log x + k$ . Find the value of k.

log 3x = log x+K T K = log3 log3+logx = logx+ K

11. Explain why  $2\log_b x = \log_b x^2$ , but the graphs of  $y = 2\log_b x$  and  $y = \log_b x^2$ 

alogbx = logbx² blc of product law of logrthms. y=alogbx-has a doman x701 XER + y=logbx² has a doman X + O, XER.

- domains are different, the graphs are not identical.



$$(\widehat{\mathbf{C}}.)$$
 1 + a

**D.** 
$$1 - a$$

The x-intercept of the graph of the function 
$$f(x) = \log_a(x - d)$$
 is

A.  $d$ 
B.  $-d$ 

$$0 = \log_a(x - d)$$
 is
$$0 = \log_a(x - d) = \log_a(x - d)$$

$$x-d=a^{\circ}$$
  $x=a^{\circ}+d$   $x=1+d$ .

$$x=a^{\circ}+d$$

13. The graph of  $y = \log x$  is transformed to the graph of  $y = \log(2x + 5)$  by a horizontal stretch about the y-axis by a factor of p followed by a horizontal translation of q units le The value of p + q is

$$p+q=0.5+4.5=3$$

14. If  $\log_6 x = k \log_{216} x$ , then the value of k is

C. 
$$\frac{1}{3}$$

(A) 3 B. -3 
$$6 = \lambda |b|^{1/3} - 3$$
  
C.  $\frac{1}{3}$  D. 36  $\log_{\lambda} x = \log_{b} x = \frac{1}{3} \log_{b} x$ 

An equation of the asymptote of  $y = 3 \log_4(x + 2) - 6$  is

**A.** 
$$x = -6$$

**B.** 
$$y = -6$$

A. 
$$x = -6$$
 B.  $y = -6$   $-\frac{1}{2}$   $X = -2$  D.  $y = -2$   $-\frac{1}{2}$   $X = -\frac{1}{2}$ .



Response

If the graph of  $y = \log_7 x$  is reflected in the x-axis, the equation of the image can be writ Numerical 16. in the form  $y = \log_c x$ . The value of c, to the nearest hundredth, is \_\_\_

(Record your answer in the numerical response box from left to right.)



The graph of  $y = \log_5 x$  is translated 2 units down. A student writes the equation of the **17.** transformed image in the form  $y = \log_5 kx$ .

The value of k, to the nearest hundredth, is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right.)



4247

$$y+\lambda = \log_5 X$$
  $\log_5 Kx = \log_5 X - 2$   
 $y=\log_5 X - 2$   $\log_5 K = -2$