Assignment

1. Complete the following from the graphs of $y = b^x$ and $y = \log_b x$, b > 0

Function	Domain	Range	x-intercept	y-intercept	Asymptote
$y = b^x$	XER.	y1470,4ek	none	l	y=0
$y = \log_b x$	X \ X 70, XER	yer	\	hone	X=0

2. Why does x have to be greater than zero in the domain of $y = \log_b x$, and not

in $y = b^x, b > 0$? y=log_X = X=b, since b70, b70 + so x must be 70 y=b can be determined for all values of x - positive/regative

3. Express each of the following in logarithmic form.

a)
$$5^2 = 25$$

b)
$$3^0 - 1$$

c)
$$2^{-4} = \frac{1}{16}$$

$$\mathbf{d} \cdot \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

$$\begin{vmatrix} 00 & \frac{1}{2} \\ \frac{1}{16} \end{vmatrix} = \frac{1}{16}$$

$$e) b^d = e$$

4. Express each of the following in exponential form.

$$a) \log_3 9 = 2$$

b)
$$\log_5 625 = 4$$

c)
$$\log_4 \frac{1}{4} = -1$$

d)
$$\log_a f = i$$

d)
$$\log_a f = i$$

e)
$$\log_{10}0.001 = -3$$

5. Is $y = \log_3 x$ the logarithmic form of $y = 3^x$? Explain your answer.

No - it is inverse,

the log form of y=3 x is x=log34

$$X = 10939$$

6. Complete the following table:

Logarithmic Form	Exponential Form	Value of x	
$\log_4 x = 2$	X=42	16	
109497=X	7 = 49 ^x	とう	
$\log_x \left(\frac{1}{64}\right) = -3$	$\frac{1}{64} = \chi^{-3}$	4	
1094 (X+2) =2	$x + 2 = 4^2$	14	
$\log_{32} x = \frac{1}{5}$	$X=32^{\frac{1}{5}}$	2	
10916(2) = X	$\frac{1}{2} = 16^x$	4	

7. By converting to exponential form, solve the equation $log_2(log_2(x-7)) = 3$.

$$\log_{\lambda}(x-7) = \lambda^{3}$$

 $\log_{\lambda}(x-7) = 8$

$$x-7=2^8$$

$$x = 263$$

8. Determine the inverse of the following functions. Answer in the form y =_____

$$a) y = 3^x$$

$$3 + 3$$

b)
$$y = \log_4 x$$

c)
$$y = 3x^2 + 2$$

a)
$$y = 3^{x}$$
 b) $y = \log_{4}x$ c) $y = 3x^{2} + 2$
Let $x = 3^{2}$ inverse $x = \log_{4}y$ inverse : $x = 3y^{2} + 2$
 $y = 1093^{2}$ $y = 4^{2}$ $y = 4^{2}$ $y = 4^{2}$ $y = 4^{2}$ $y = 4^{2}$

e)
$$y = 20^x$$

d)
$$y = \log_3 x$$
 e) $y = 20^x$ f) $x = 20^y$
inverse: $x = \log_3 y$ inverse: $x = 20^y$ inverse: $y = 20^y$

inverse:
$$x = \log_3 2$$

a)
$$y = 3(2)^{x}$$

b)
$$y = 10(3)^x$$

c)
$$y = \frac{5}{6}(10)^x$$

Change each of the following from exponential form to logarithmic form.

a)
$$y = 3(2)^x$$
b) $y = 10(3)^x$
c) $y = \frac{5}{6}(10)^x$
d) $a = b(c)^d$

$$\frac{3}{3} = 2^x$$

$$\frac{3}{10} = 3^x$$

$$\frac{5}{10} = 10^x$$

$$\frac{9}{10} = 1$$

$$\log (\hat{b}) = d$$
.

Change each of the following from logarithmic form to exponential form $y = ab^x$.

$$\mathbf{a)} \ \log_8 \left(\frac{y}{9} \right) = x$$

$$\frac{9}{9} = 8^{x}$$
 $y = 9(8^{x})$

b)
$$\log_{20}(6y) = x$$

c)
$$\log_e\left(\frac{y}{5}\right) = x$$

c)
$$\log_e \left(\frac{y}{5} \right) = x$$
 d) $\log_{10}(0.5y) = x$

$$y = \frac{1}{6}(a0^{x})$$
 $y = 5(e^{x})$ $y = 2(10^{x})$

$$6y = 20^{\times} \qquad \frac{y}{5} = e^{\times} \qquad 0.5y = 10^{\times}$$

11. By converting to exponential form, solve the following equations for y.

$$\mathbf{a)} \ \ 3 = \log_2\left(\frac{y}{4}\right)$$

$$\frac{9}{4} = \lambda^3$$

b)
$$\log_2\left(\frac{y}{5}\right) = -3$$

$$\frac{9}{5} = 2^{-3}$$

$$c) 2 = \log_4 32y$$

$$y = \frac{1}{30}.4^{2}$$

Multiple 12. If $log_4(4096x) = 64$, then the value of x is Choice

A.
$$4^{\frac{32}{3}}$$

D.
$$4^{32}$$

$$X = \frac{4^{14}}{4^{16}}$$
 $X = \frac{4^{158}}{58}$

13. The graph of $\log_x y = 1$ is

Numerical sponse 14.

4. To the nearest tenth, the y-intercept of the graph of $log_5(y+2) = x+1$ is _____.

(Record your answer in the numerical response box from left to right.)

$$X=0$$
 $\log_{5}(y+2)=0+1$
 $y+2=5$
 $y+2=5$
 $y=3$

15. If $\log_b 81 = \frac{2}{3}$, then the value of b is to the nearest whole number is _____.

(Record your answer in the numerical response box from left to right.)

