Trigonometry - Functions and Graphs Lesson #10: Modelling Sinusoidal Functions §

Assignment.

1. The graph shows the height, 4 metres, above the ground over time, ¢, in seconds that it take
a person in a chair on a Ferris Wheel to complete two revolutions. The minimum height o
the Ferris Wheel is 2 metres and the maximum height is 20 metres.
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a) How far above the ground is the person as the wheel starts rotating?
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b) If it takes 16 seconds for the person to return to the same height, determine the equatic
of the graph in the form A(¢) = a sin bt + d.
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c) Determinethedistancethepersonisfmmtheground,todxe‘nearesttenthofameu'e,-

after 30 seconds.
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d) How long from the start of the ride does it take for the person to be at a height of 5
metres? Answer to the nearest tenth of a second. -
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2. A Ferris Wheel ride can be represented by a sinusoidal function. A Ferris Wheel at

Westworld Theme Park has a radius of 15 m and travels at a rate of six revolutions per
minute in a clockwise rotation. Ling and Lucy board the ride at the bottom chair from a
platform one metre above the ground.

a) Sketch three cycles of a sinusoidal graph to represent the height Ling and Lucy are

» a&\\{ ground, in metres, as a function of time, in seconds.
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b) Determine the equation of the graph in the form h(r) = a cos [b(f - ¢)] + d.
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c) IfmeFerrisWheeldownotstop,determinetheheightLingandI.ncyareabovethe
ground after 28 seconds. Give answer to the nearest tenth of metre.
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d) How long after the wheel starts rotating do Ling and Lucy first reach 12 metres from t
ground? Give answer to the nearest tenth of a second. prm——
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e) How long does it take from the first time Ling and Lucy reach 12 metres until they ne»
reach 12 metres from the ground? Give answer to the nearest second,
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3. Consider the following information for a town in Saskatchewan for a leap year of 366 day

O * The latest sunrise time is at 09:00 on December 21 (day 356).
*.The earliest sunrise time is at 03:30 on June 21 (day 173).
* There is NO daylight saving time in Saskatchewan.
* The sunrise times vary sinusoidally with the day of the year.

a) Write a sinusoidal equation which relates the time of sunrise, #, to the day of the year, ¢
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~b) Use the equation to determine what time, to the nearest minute,
dn March 11.

a\taq +Ul=11 F = aﬂ?co&((‘% Xﬂﬂo))ﬂ&’i’

1\ - b
c) g::{rminemeaveragetimethesunﬁsathmughomﬂwyear. 6 -‘1—“\.23_—_‘,(0\0:\ ;
0w =6 .25 hours How = 0L (S —

. d) How many days of the year does the sun rise before 6 a.m.?
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Use the following information to answer the next question.

In Inverdeen harbour, the maximum depth of water is 22 metres at 1 am. andlp.m
as shown on the grid below.

The minimum depth of water is 6 metres at 7 a.m. and 7 p.m.
The depth is 14 metres at 4 am., 10 a.m.,4 p.m. and 10 p.m.

Assume that the relation between the depth of water, y metres, and the time, ¢ hours,
is a sinusoidal function.

‘4. a) If +=0 at midnight, sketch the graph of the sinusoidal function on the grid below.
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b) State the amplitude and period of the sinusoidal function. (Include units in the answers
amp = AL g perdodk= Qv
c) Detennineanequau&';n of the sinusoidal function in the form _
y= asin[b(t-c)]+d, where a>0andc>0.
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Q d) If the equation of the sinusoidal function is written in the form
y= acos[it-c)]+d, where a>0and c¢>0,
only one of the parameters, a, b, ¢, d will be different from the values in c).
State which parameter will be different and give its value.
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¢) Calculate the depth of the water, to the nearest tenth of a metre, at 3:30 pm.
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S. Andrea, a local gymnast, is doing timed bounces on a trampoline. The trampoline mat
is 1 metre above ground level. When she bounces up, her feet reach a height of 3 metres
above the mat, and when she bounces down her feet depress the mat by 0.5 metres. Once
Andreaisinamythm,hercoachusesastopwatchtomkethefollowingteadings:

; e At the highest point the reading is 0.5 seconds.
O * At the lowest point the reading is 1.5 seconds.

a) Determine the maximum and minimum heights of Andrea’s feet above the ground as
she is bouncing on the trampoline.
mox halgatr = & 3 = Hm
WY \\u‘g\\\' = \-0'Y =05 m .
b) Sketch two periods of the graph.of the sinusoidal function which represents Andrea’s
\_heightabovethegmund,inmem.asaﬁmctionoftim,inseconds.
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.c) How high was Andrea above the mat when the coach started timirlg?
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d) Determine the equation of the graph in the form A(f) = a sin bt + d.
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e) How high, tothcneatmttendlofametre )asAndmaabovethegxmmd
after 2.7 seconds? .
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f) Determine Andrea’s exact height above the mat after 17 seconds.
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g) Howlongaﬁerdxenmmgstamdd:dAndmaﬁrsttouchmemat?
Answer to the nearest tenth of a second.
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1. a) llmetres b) h(:)-9sin(l"—6:J+u ¢) 76metres d) 19.7 seconds

2. b) Kt)= lSeos“(t 5)+16 ¢) 114 metres d) 2.lsewnds e) 6 seconds

3. 9) t-275w&(-—(d+ 10))4-6.25 b) 06:45 - ¢) 06:15 d). 173

4. a) see graph below 5. 2) max=4m,min=05m
b) amplitude = 8m, period = 12 hours b) see graph below
¢c) y-8sin(g(r— 10)]4-14 ¢) 125metres d) h(r) = 1.75 sin nt + 225

d) c=1 e) 16l m e) 3.7 metres f) 125 metres g) 1.3 second:
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