Assignment

1. State whether each statement is true or false.

a)
$$\sqrt{20} - \sqrt{5} = \sqrt{15}$$

a)
$$\sqrt{20} - \sqrt{5} = \sqrt{15}$$
 b) $\sqrt{6} \times \sqrt{7} = \sqrt{42}$

c)
$$\frac{\sqrt{12}}{\sqrt{2}} = \sqrt{6}$$

d)
$$\sqrt{36+9} = \sqrt{36} + \sqrt{9}$$

- 2. State whether the following are true or false.
 - a) The square roots of 36 are ±6. T
- b) The cube roots of 27 are ±3.

c)
$$\sqrt{36} = \pm 6$$

d)
$$\sqrt[3]{27} = \pm 3$$

e) If
$$x^2 = 36, x \in R$$
, then $x = \pm 6$

e) If
$$x^2 = 36$$
, $x \in R$, then $x = \pm 6$. f) If $x^3 = 27$, $x \in R$, then $x = \pm 3$.

3. Without using a calculator, determine, where possible, the exact value of the following.

a)
$$\sqrt{81}$$

b)
$$\sqrt{-100}$$
 Not **c)** $\sqrt[3]{-64}$ - 4

c)
$$\sqrt[3]{-64}$$
 - \forall

e)
$$\sqrt[4]{\frac{81}{16}} = \frac{\sqrt[4]{81}}{\sqrt[4]{16}} = \frac{3}{2}$$
 f) $\sqrt[4]{-16}$ not poss

f)
$$\sqrt[4]{-16}$$
 not poss

Without using a calculator, arrange the following radicals in order from least to greatest.

$$4\sqrt[5]{1}$$
, $-2\sqrt[3]{-27}$, $\frac{3}{2}\sqrt[4]{16}$, $4\sqrt[3]{64}$
 $4(1)$ $(-3)(-3)$ $\frac{3}{2}(3)$ $4(4)$
 4 6 3 6 16 16

5. Use a calculator to arrange the following radicals in order from least to greatest.

$$\sqrt{10}$$
, $\sqrt[3]{-729}$, $\sqrt[5]{-243}$, $\sqrt[4]{4.096}$, $\sqrt[5]{25}$, $\sqrt[6]{242}$

- 6. Convert the following radicals to mixed radicals in simplest form.
 - a) $\sqrt{50}$

- 6) $\sqrt[3]{3000}$ f) $\sqrt[3]{-81}$ g) $-5\sqrt[4]{162}$ h) $\sqrt[5]{-160}$ $-3\sqrt[3]{3}$ $-5\cdot 3\sqrt[4]{2}$ $-2\sqrt[5]{5}$ $-15\sqrt[4]{2}$
- 7. Use the Pythagorean Theorem to determine the exact length of AB.
 - Express the answer as
- a) an exact value in simplest mixed radical form
- b) a decimal to the nearest hundredth

Do not use a calculator to answer question #8.

- Given that $\sqrt{5}$ is approximately equal to 2.24, and $\sqrt{50}$ is approximately equal to 7.07, then find the approximate value of
 - a) $\sqrt{500}$
- **b**) $\sqrt{5000}$
- c) $\sqrt{20}$
- **d**) $\sqrt{0.05}$
- e) $\sqrt{0.5}$
- Determine the exact distance between the following pairs of points. Answer as a mixed radical in simplest form.
- **a)** (-3, 8) and (-1, 4) **b)** (3, 2) and (-3, -4)
- c) (15, 8) and (9, 20)

- 10. Convert the following mixed radicals to entire radicals.

b)
$$2\sqrt[3]{4}$$

c)
$$-2\sqrt[4]{3}$$

d)
$$-10\sqrt[3]{7}$$

d)
$$-10\sqrt{7}$$
 e) $8\sqrt{10}$ $-\sqrt[3]{10^3}$, $7 = -\sqrt[3]{700}$ $\sqrt{8^3}$, 10

f)
$$\frac{1}{3}\sqrt[3]{9}$$

$$\sqrt[3]{(\frac{1}{3})^3}$$
, $9 = \sqrt[3]{\frac{1}{3}}$

99

11. Without using a calculator, arrange the following radicals in order from greatest to least.

$$3\sqrt{5}$$
, $5\sqrt{3}$, $\sqrt{60}$, $2\sqrt{11}$, $\frac{1}{3}\sqrt{450}$

- Consider the radicals $3\sqrt[3]{10}$, $4\sqrt[3]{3}$, $5\sqrt[3]{2}$, $2\sqrt[3]{31}$
 - a) Explain how to arrange the radicals in order from least to greatest without using a calculator.

convert to entire radical the largest radiand will be largest number

b) Arrange the radicals in order from least to greatest without using a calculator.

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

100	Operations on Radicals Lesson #1: Entire Radicals and Mixed Radicals
	- L

_	
н	3 (1, 1
	NORTH TANKS
1	Multiple
ı	Z.11
п	Choice
	CHOICE

Without using a calculator, determine which of the following radicals is not equal to the others.

V192

Response

Numerical 14. The smaller square has side length 12 cm. The side length of the larger square can be written in simplest mixed radical form as $a \sqrt{b}$, where $a, b \in N$.

The value of b^a is _____. dia meter = side length

5 = 4096

Record your answer in the numerical response box from left to right.)

15. The volume of an ice cube is 32 000 mm³. The exact length of each edge of the ice cube can be written in simplest mixed radical form as $p\sqrt[3]{q}$ where p and q are whole numbers.

The value of p - q is _____.

(Record your answer in the numerical response box from left to right.)

Answer Key

- 1. a) false b) true c) true d) false
- 2. a) true b) false c) false d) false e) true f) false
- 3. a) 9 b) not possible c) -4 d) 10 e) $\frac{3}{2}$ f) not possible
- 4. $\frac{3}{2}\sqrt[4]{16}$, $4\sqrt[5]{1}$, $-2\sqrt[3]{-27}$, $4\sqrt[4]{\frac{3}{64}}$ 5. $\sqrt[3]{-729}$, $\sqrt[5]{-243}$, $\sqrt[5]{25}$, $\sqrt[6]{242}$, $\sqrt{10}$, $\sqrt[4]{4096}$
- 6. a) $5\sqrt{2}$ b) $2\sqrt{15}$ c) $3\sqrt[3]{2}$ d) $4\sqrt{5}$ e) $10\sqrt[3]{3}$ f) $-3\sqrt[3]{3}$ g) $-15\sqrt[4]{2}$ h) $-2\sqrt[5]{5}$ 7. a) $2\sqrt{29}$ b) 10.77 8. a) 22.4 b) 70.7 c) 4.48 d) 0.224 e) 0.707
- **9.** a) $2\sqrt{5}$ b) $6\sqrt{2}$ c) $6\sqrt{5}$
- **10.a)** $\sqrt{245}$ **b)** $\sqrt[3]{32}$ **c)** $-\sqrt[4]{48}$ **d)** $-\sqrt[3]{7000}$ or $\sqrt[3]{-7000}$ **e)** $\sqrt{640}$ **f)** $\sqrt[3]{\frac{1}{3}}$
- 11. $5\sqrt{3}$, $\sqrt{60}$, $\frac{1}{3}\sqrt{450}$, $3\sqrt{5}$, $2\sqrt{11}$
- 12. a) Write each mixed radical as an entire radical and compare the radicands. The new radicands are determined by cubing the original coefficients and multiplying by the original radicands.

	b) 41	$\sqrt[3]{3}$, $2\sqrt[3]{2}$	31,	$5\sqrt[3]{2}$						
13.	С	14.	4	0	9	6	15.	1	6	

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.